How Economists Analyze Data: An Application to Demand for Cigarettes 1960-2008

Ted Juhl

1Department of Economics
University of Kansas

May 27 KU Mini College
Outline

1 Introduction
2 Panel Data
3 Cigarette Data
4 Models
5 Estimation
6 Future Directions
Introduction

Introduce Yourself:

- State your name.
- What did you of study in college?
- Is your job in same area? (NO)
Without education, we are in horrible and deadly danger of taking educated people seriously.

G.K. Chesterton
College teaches you how to figure out stuff.

Mark Juhl
Examples of Empirical Studies in the News

Diet Soda Causes Weight Gain!

- So I should just drink the real stuff?
- Theory: fake sweeteners cause more eating.
- My theory: you start drinking diet soda because you gained weight!
Elderly People Who Walk Slowly Will Die of Heart Disease!
- Researchers followed elderly subjects and recorded pace.
- They found that slower walkers had more heart problems.
- Researchers conclude that walking slower is bad for heart.
- My theory: if you have heart problems, you walk slowly!
Suppose we want to explore the effect of education on wages.

We could observe many people and see what happens.

Problem: It may be that we confuse “gifted" people with educated people.

We want to see what happens when you “educate" a random person.
Economists and Panel Data

- A panel data set observes many individuals.
- Each individual is followed over time.
- An individual could also be a firm, country, state, etc.
- This is the way much of current data is collected.
Economists and Panel Data

Recent Studies Using Panels

- Do CEO’s get a raise for firing workers? (No)
- Does a common currency increase trade between countries? (Yes, a lot)
- Is there evidence for discrimination based on race and gender? (Yes, no, and sometimes)
Panel Data and Education

Person 2 Has High Ability

\[y = \alpha_2 + \beta x \]
\[y = \alpha_1 + \beta x \]

\(x = \text{measure of education} \)
\(y = \text{measure of income} \)
Panel Data and Education

Fit One Line to Both People
Panel Data and Education

Education Effect is Overestimated

x = measure of education
y = measure of income

[Scatter plot showing a linear relationship between x and y, indicating an overestimation of the education effect.]
Panel Data and Education

If we don’t take individuals into account
- we can get poor estimates of effects of education (too large in this example)
- but ... it could be worse
Bill Gates Quit College

\[y = \alpha_1 + \beta x \]

\[y = \alpha_2 + \beta x \]
Panel Data and Education

Bill Gates Quit College

x = measure of education
y = measure of income
Panel Data and Education

Conclusion: I Should've Quit College!
Data Description for Cigarettes

I’ll quit smoking when cigarettes cost \(x \) per pack.

Billboard on 435 near KCI
Things We Can See to Measure Cigarette Consumption

- Packs per capita
- Prices (in real dollars, $2008)
- State Income per Capita (in real dollars)
- Prices in neighboring states
We observe data for

- 50 states + D.C.
- from 1955 to 2008
- This is Panel Data where each state is the individual.
Cigarettes

Price Per Pack in 2008 Dollars

Cigarette Prices

Price Per Pack in 2008 Dollars
Cigarettes

What's With Delaware?
Demand for cigarettes in each state depends on:

- Price of cigarettes. As price ↑, quantity demanded ↓.
- State income. The effect could be positive or negative.
- Prices in other states. As prices in other states ↑, quantity demanded in this state ↑.
Cigarettes

Demand for Cigarettes?
Cigarettes

Demand in Logarithms

Natural Logarithm of Packs Per Person

Natural Logarithm of Price

Natural Logarithm of Packs Per Person

Natural Logarithm of Price
Cigarette Demand and Panel Data

The data we have shown combines all states

- Do all the states have the same demand?
- Do all states respond to prices the same way?
Demand is Downward Sloping in Vegas and Utah

- Utah
- Nevada

Natural Logarithm of Packs vs. Natural Logarithm of Price
Cigarette Demand and Panel Data

Summary:

1. It looks like different states have different demand curves.
2. They seem to have very similar slopes.
3. Panel data is an appropriate technique to estimate the slopes.
Models of Demand

All models are wrong, but some are useful.

George Box
Models of Demand

English: Demand for cigarettes in each state depends on
- price of cigarettes
- income of state
- prices in neighboring states
- amount of cigarettes purchased last year
Models of Demand

Math:

\[\text{Incigs}_{it} = \alpha_i + \beta_1 \text{Incigs}_{i,t-1} + \beta_2 \text{Inprice}_{it} + \beta_3 \text{Inincome}_{it} + \beta_4 \text{Inpriceother}_{it} + \lambda_t + \nu_{it} \]

\[i = 1, \ldots, 51 \]
\[t = 1955, \ldots, 2008 \]

\(\text{Incigs}_{it} \) = natural log of cigarettes for state \(i \) at time \(t \)
\(\text{Incigs}_{i,t-1} \) = same thing but for the previous period
\(\text{Inprice}_{it} \) = natural log of real price
\(\text{Inpriceother}_{it} \) = natural log of neighbor price
\(\text{Inincome}_{it} \) = natural log of per capita real income
\(\alpha_i \) = each state can have a shift but same slope
\(\lambda_t \) = each period can have events like advertising bans, etc.
\(\nu_{it} \) = error
Models of Demand

Demand is Downward Sloping in Vegas and Utah

[Graph showing data points for Utah and Nevada with downward sloping trend]
Models of Demand

Interpretation:
- Dang! I should have gone to the session on spelling bees in Korea!
- Each coefficient, β_j, represents an elasticity.
What is an elasticity?

\[\text{Incigs}_{it} = \alpha_i + \beta_1 \text{Incigs}_{i,t-1} + \beta_2 \text{Inprice}_{it} + \beta_3 \text{Inincome}_{it} + \beta_4 \text{Inpriceother}_{it} + \lambda_t + \nu_{it} \]

\[i = 1, \ldots, 51 \]

\[t = 1955, \ldots, 2008 \]

- Elasticity of price, \(\beta_2 \) represents the percentage change in demand if we change the price by 1 percent.
- If \(\beta_2 \leq -1 \), demand is elastic.
- When demand is elastic and taxes per pack increase, tax revenues decrease!
- If \(-1 < \beta_2 < 0 \), demand is inelastic.
- When demand is inelastic and taxes per pack increase, tax revenues increase.
Models of Demand

What about β_1?

$$\text{Incigs}_{it} = \alpha_i + \beta_1 \text{Incigs}_{i,t-1} + \beta_2 \text{lnprice}_{it} + \beta_3 \text{lnincome}_{it}$$

$$+ \beta_4 \text{lnpriceother}_{it} + \lambda_t + v_{it}$$

$i = 1, \ldots, 51$

$t = 1955, \ldots, 2008$

- β_1 is a measure of habit formation.
- The closer β_1 is to one, the more persistent.
Estimation

\[\text{Incigs}_{it} = \alpha_i + \beta_1 \text{Incigs}_{i,t-1} + \beta_2 \text{Inprice}_{it} + \beta_3 \text{Inincome}_{it} \]
\[+ \beta_4 \text{Inpriceother}_{it} + \lambda_t + \nu_{it} \]
\[i = 1, \ldots, 51 \]
\[t = 1955, \ldots, 2008 \]

- We don’t know any of the \(\beta \) values.
- We must use our data and many pages of matrices to find estimated values.
For 1960-1970

\[\text{Incigs}_{it} = \alpha_i + \beta_1 \text{Incigs}_{i,t-1} + \beta_2 \text{lnprice}_{it} + \beta_3 \text{lnincome}_{it} + \beta_4 \text{lnpriceother}_{it} + \lambda_t + \nu_{it} \]

- $\hat{\beta}_2 = -0.475$. If price increases one percent, demand declines by 0.475 percent.
- $\hat{\beta}_3 = 0.365$. If income increases one percent, demand increases by 0.365 percent.
- $\hat{\beta}_4 = 0.039$. If neighbor state raises cigs by one percent, demand in our state increases by 0.039 percent. This estimate is not statistically significant.
- $\hat{\beta}_1 = 0.305$. Demand is not very persistent.
For 1970-1980

\[\text{Incigs}_{it} = \alpha_i + \beta_1 \text{Incigs}_{i,t-1} + \beta_2 \text{lnprice}_{it} + \beta_3 \text{lnincome}_{it} \]
\[+ \beta_4 \text{lnpriceother}_{it} + \lambda_t + \nu_{it} \]

- \(\hat{\beta}_2 = -0.483 \). If price increases one percent, demand declines by 0.483 percent.
- \(\hat{\beta}_3 \) is not statistically significant
- \(\hat{\beta}_4 = 0.091 \). If neighbor state raises cigs by one percent, demand in our state increases by 0.091 percent.
- \(\hat{\beta}_1 = 0.547 \). Demand is more persistent.
For 1980-1990

\[Incigs_{it} = \alpha_i + \beta_1 Incigs_{i,t-1} + \beta_2 \lnprice_{it} + \beta_3 \lnincome_{it} + \beta_4 \lnpriceother_{it} + \lambda_t + \nu_{it} \]

- \(\hat{\beta}_2 = -0.218 \). If price increases one percent, demand declines by 0.218 percent. This is less elastic than previous decades.
- \(\hat{\beta}_3 = 0.129 \). If income increases one percent, demand increases by 0.129 percent.
- \(\hat{\beta}_4 \) is not significant.
- \(\hat{\beta}_1 = 0.677 \). Demand is more persistent.
Estimation

For 1990-2000

\[\text{Incigs}_{it} = \alpha_i + \beta_1 \text{Incigs}_{i,t-1} + \beta_2 \ln\text{price}_{it} + \beta_3 \ln\text{income}_{it} \]
\[+ \beta_4 \ln\text{priceother}_{it} + \lambda_t + \nu_{it} \]

- \(\hat{\beta}_2 = -0.405 \). If price increases one percent, demand declines by 0.405 percent. This is similar to 1960’s and 1970’s.
- \(\hat{\beta}_3 = 0.026 \). If income increases one percent, demand increases by 0.026 percent.
- \(\hat{\beta}_4 = 0.075 \). If neighbor state raises cigs by one percent, demand in our state increases by 0.075 percent.
- \(\hat{\beta}_1 = 0.661 \). Demand is roughly same persistent as 1980’s.
Estimation

For 2000-2008

\[Incigs_{it} = \alpha_i + \beta_1 Incigs_{i,t-1} + \beta_2 \ln\text{price}_{it} + \beta_3 \ln\text{income}_{it} \]
\[+ \beta_4 \ln\text{priceother}_{it} + \lambda_t + v_{it} \]

- \(\hat{\beta}_2 = -0.781 \). If price increases one percent, demand declines by 0.781 percent. This is most elastic time period.
- \(\hat{\beta}_3 = 0.208 \). If income increases one percent, demand increases by 0.208 percent.
- \(\hat{\beta}_4 = 0.143 \). If neighbor state raises cigs by one percent, demand in our state increases by 0.143 percent. This time period is most sensitive to neighbor price changes.
- \(\hat{\beta}_1 = 0.382 \). Demand is less persistent.
Are States Equal in Elasticity?

We should test if

\[\beta_{1i} = \beta_1 \]
\[\beta_{2i} = \beta_2 \]
\[\beta_{3i} = \beta_3 \]
\[\beta_{4i} = \beta_4. \]

English: All the states have same slope
Cigarettes

Demand is Downward Sloping in Vegas and Utah

Natural Logarithm of Packs vs. Natural Logarithm of Price

Utah

Nevada

Demand is Downward Sloping in Vegas and Utah
Are States Equal in Elasticity?

\[- \frac{1}{2} \sum_{i=1}^{N} \left(\text{vec}(\Sigma_i^{-1})^\top - \frac{\nu_i^\top \Sigma_i^{-1} \otimes \nu_i^\top \Sigma_i^{-1}}{\nu_i^\top \Sigma_i^{-1} \nu_i} \right) (X_i \otimes X_i) \text{vec}(I_k) \]

\[+ \frac{1}{2} \sum_{i=1}^{N} \left(w_i^\top \Sigma_i^{-1} \otimes w_i^\top \Sigma_i^{-1} \right) (X_i \otimes X_i) \text{vec}(I_k) \]

\[+ \frac{1}{2} \sum_{i=1}^{N} \left[\left(w_i^\top \Sigma_i^{-1} \nu_i \nu_i^\top \Sigma_i^{-1} w_i \right) \frac{\nu_i^\top \Sigma_i^{-1} \otimes \nu_i^\top \Sigma_i^{-1}}{(\nu_i^\top \Sigma_i^{-1} \nu_i)^2} \right] (X_i \otimes X_i) \text{vec}(I_k) \]

\[- \frac{1}{2} \sum_{i=1}^{N} \left(\frac{w_i^\top \Sigma_i^{-1} \nu_i \nu_i^\top \Sigma_i^{-1} \otimes w_i^\top \Sigma_i^{-1} \nu_i^\top \Sigma_i^{-1}}{\nu_i^\top \Sigma_i^{-1} \nu_i} \right) (X_i \otimes X_i) \text{vec}(I_k) \]

\[- \frac{1}{2} \sum_{i=1}^{N} \left(\frac{w_i^\top \Sigma_i^{-1} \otimes w_i^\top \Sigma_i^{-1} \nu_i \nu_i^\top \Sigma_i^{-1}}{\nu_i^\top \Sigma_i^{-1} \nu_i} \right) (X_i \otimes X_i) \text{vec}(I_k) \]
Future Directions

There are several key features that could be explored:

- Current model assumes constant elasticity. This appears to work well but we should check.
- We need a more careful model of neighbor state behavior.
- If Kansas increases cigarette taxes per pack, we need to know if tax revenue may actually decrease.